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The authors present results of a comparative investigation of heat transfer in 
flow over bodies of various shapes. 

The influence of blowing on the heat flux to a surface can be investigated by examining 
the flow over porous bodies. Here it is of interest to investigate the characteristics of 
the effectiveness of blowing for bodies of various shapes. Where one must account for the 
inertia of heat transfer in the material of the body it is expedient to consider a coupled 
formulation of the heat and mass transfer, since if one arbitrarily assigns the blowing dis- 
tribution according to the body contour, the heat-transfer coefficient will be the unknown 
function and it will be difficult to use separate formulations. 

We consider supersonic flow of a perfect gas over axisymmetric bodies of revolution of 
various shapes for a range of stagnation pressure such that different flow regimes are set 
up in the boundary layer. In accordance with [1-3], which deal with coupled heat transfer in 
the boundary layer, the formulation of the problem includes a system of nonsimilar boundary- 
layer equations and the unsteady heat conduction equation for a porous or a perforated ma- 
terial with appropriate boundary and initial conditions. 

Since the boundary layer thickness for the bodies considered is much less than the mini- 
mum radius of curvature of the body, the system of equations describing the variation of 
average quantities in the boundary layer, using Dorodnitsyn--Lees variables, may be written as 
follows [3]: 
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In  w r i t i n g  Eqs.  ( 1 ) - ( 8 )  we have  used a n a t u r a l  sy s t em o f  c o o r d i n a t e s ,  where s i s  the  d i -  
m e n s i o n l e s s  l e n g t h  o f  a r c ,  r eckoned  from the  s t a g n a t i o n  p o i n t  a l o n g  the  o u t e r  p r o f i l e ,  and q 
and y~ are directed normal to the external profile of the shell in different directions. We 
assume that the blown gas is identical in composition with that of the incident stream and 
that the porosity is constant in time. Because of the assumption that the_continuity equation 

is quasistationary for the gas phase in the porous material [4] we assume that (pv)g~r(l--Y-!1~ ~ = 
' , R : /  

Xw(PV) w for the coordinate system used. It is also postulated that the shell thickness L, 
which was constant in the calculations, is considerably less than the minimum radius of curva- 
ture of the body R:, and therefore the angle between the normals to the external and internal 
shell profiles is small. 

To describe the turbulent flow we use a two-layer turbulent boundary layer model. In the 
inner region the turbulent viscosity is determined from the Prandtl formula with a Van Dreist-- 
Sebeci damping factor [5] to account for the influence of pressure gradient and blowing: 
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In the outer region of the turbulent boundary layer we used the Clauser formula with a 
correction factor to account for transverse mixing 

[ <+)]i e = 0,0168p 1 + 5,5 (u~- -u )  dy .  (10) 

0 

Here ~ is the coefficient of kinematic molecular viscosity; Tw, friction stress at the body 
surface; and ~, boundary-layer thickness. The boundary between the inner and outer regions 
was determined from the condition that the coefficients of Eqs. (9) and (i0) be equal. 

To calculate the flow in the transition region we used the formulas 

l =  p~ i F  pe , P r =  (~ + f e )  prmprt 
, (11) 
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where the  s u b s c r i p t s  m and t r e f e r  to  m o l e c u l a r  and t u r b u l e n t  t r a n s f e r ;  F i s  the  c o e f f i c i e n t  
o f  l o n g i t u d i n a l  m ix ing ,  which  d e s c r i b e s  the  f low t u r b u l e n c e  and was s u g g e s t e d  i n  [6] f o r  the  
case  o f  f low o v e r  b l u n t  b o d i e s :  
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Ren,M n are the Reynolds and Mach numbers calculated at the point of loss of stability of the 
laminar boundary layer. The coordinate of the stability loss point Sn, which marks the be- 
ginning of the flow transition region, was determined from the critical Reynolds number value: 

We Pe Ue Ue (13) 
0 

In the laminar flow region F = O, and in the turbulent region P = i. 
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The calculations performed and a comparison with experimental data have shown that one 
can use this model of turbulent flow in the boundary layer with blowing present [7]. 

We considered flow over spherical bodies and also bodies with generator equations Yc = 
XC~ I 0 c' ~ = 0.5, a = 0.25, a = 0.125, (Xc---l)~o + Yc = 1 (here the dimensionless quantities Xc, 
Yc correspond to a Cartesian coordinate system with origin at the stagnation point and the 
x c axis directed along the body axis of symmetry). For the pressure distribution over the 
profile of bodies of different shape we used the data of [8, 9] for supersonic flow of a 
perfect gas, as approximated with the help of splines. 

In the numerical integration we took Pr m = 0.72, Pr t = i, and the molecular viscosity 
was determined according to the Sutherland law. Besides the assumption that Cp is constant, 
the class of materials with a given porosity was restricted in such a way that the second 
terms can be neglected in the expressions 

Jh----)~)~J-(1--q))+.~'~ c P , .  ~ ,  ~o-- ~ h c - - ~  (1--qD) q - P~cP--g eP 
.. pl,Cl, Pl*Cl* 

In solving the coupled problem it was assumed that the thermophysical characteristics of the 
material are constant. 

The numerical integration of the boundary problem of Eqs. (1)-(8) was performed using a 
difference scheme obtained by means of the method of [i0]. The error in approximating the 
original system of equations and the boundary conditions was O(A~)2+O(As), O(AFI)2+O(AT) 

The method of calculation was analogous to that of [3]. It should be noted that in the 
developed turbulent flow region, one should use a larger number of nodal points in the com- 
putational region, compared with the laminar flow region, to find the asymptotic behavior of 
the unknown functions at the outer edge of the boundary layer. Most of the calculations were 
performed with a constant integration step ~ across the boundary layer, although a variable 
step size was used in some calculations in the transverse direction, and the mesh was com- 
pressed in the viscous subla~r region. The integration step Ay~ was varied as a function of 
the coupling parameter K = VRePrm~eo/~,, and for large values of K it was chosen as a 
variable. 

In performing the numerical calculations, besides the body geometry, we also varied the 
governing parameters of the problem, such as the Mach number H in the incident stream, the 
coupling parameter K, the temperature 61i,which was chosen equal to e_~, the stagnation point 
pressure peo, and the mass flow rate at the body surface (PV)w(S). 

We now consider the results of solving the boundary problem for the case of an isother- 
mal surface. Figure 1 shows the dimensionless heat flux qw as a function of the longitudinal 
coordinate s in the boundary layer under laminar conditions. 

It can be seen from Fig. 1 that for the blunter bodies (curves 2, 3, 4) the heat flux 
maximum is shifted to the lateral surface, toward the region where there is a minimum radius 
of curvature and a maximum velocity gradient at the outer edge. We note that for the shapes 
examined the heat flux on the lateral surface decreased with decrease of the minimum body 
radius of curvature. In addition, comparing Figs. la and b, one can see that for the laminar 
flow in the boundary layer the decrease of heat flux due to the influence of blowing with a 
given mass law (~-~)w(S) is greater for the blunt bodies (e.g., for (~)w = ithe maximum heat flux for 

0,5 
Yc = Xc~ falls by __a factor of 5.6, and for Yc = x c it falls by a factor__of 2.5, com- 
pared with the case (pv) w = 0). This is due to the fact that for the same (pv) w the dimen- 
sionless flow rate fw(S) increases in absolute value for bodies with large radii of curvature 
in the vicinity of the stagnation point. It should be noted that for (pv) w = 0 the distri- 
butions of heat flux obtained using [ii] 

q~o ] / -~  2P~'~176 dx ,]o.1 O,a~o ' 

.i 2 O~w/(1 -- 0,~) 1 @ 0.096 V'~ ~- = 2~. due 
= pwl~;uer~ dx, On~o/(1 -- Owo) = 1.068 ' ue d~ 

0 

for the different body shapes in the constant surface temperature case coincide to an accu- 
racy of 1-2% with the corresponding distributions of qw obtained from calculations in the Mach 
number range examined. 
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Fig. i. The dimensionless heat flux as a func- 
tion of the longitudinal coordinate s: I, 2, 3) 
flow over bodies with profile equations Yc = x~, 
a = 0.5, 0.25, and 0.125, respectively; 4) 
( x c _ l ) ~ O  + ~o Yc = 1; 5) a s p h e r e ,  (Xc--1) 2 + y2 =1 ,  
M~ = 4, T~ = 288~ T w = 300~ a) (~)w = 0; b) 
(~)w(S) = const = I. 
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Fig. 2. The rat io qw/qwo as a function of the 

re la t ive  flow rate (p-~u)w/I--] : i, 2, 3) y = x e, \c,y 0 

c~ = 0.5, 0.25, and 0.125, r e s p e c t i v e l y ;  4) a 
s p h e r e ;  5) x l ~ 2 4 7  ylO = 1.  

Figure 2ashows the ratio qw/qwo as a function of the relative flow rate (pv)w/ , where 
0 

(+)0 1--040 and qwo are found with no blowing. Line I was obtained using the relation of 

[12], constructed for the vicinity of the stagnation point: 

qJqwo= l - - k ( ~ ) , d ( ~ )  k----0.57--0.61. 
o' (14) 

The points denote the rat ios qw/qwo obtained for the bodies considered in the region of the 
maximum heat f lux  under laminar flow conditions, The values of the or ig inal  parameters co- 
incide with the corresponding values for Fig. i .  

I t  can be seen from Fig. 2 that for moderate blowing levels Eq. (14) can be used for 
bodies where the maximum heat f lux  qw(s} is obtained on the la tera l  surface in a region be- 
ginning at the stagnation point, up to values of s corresponding to the maximum heat flux. 

In [13] the efficiency of porous cooling for a sphere was derived as the ratio of the 
total heat flux when screened due to blowing to the total mass flow rate of the blown gas: 

s k s k 

.f rwqwods-- ~ rwqwds 
Hc~ o o 

s~ ' (15)  
(He - -  Hw) ~ rw (p@~ ds 

0 
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Fig. 3. The dimensionless heat flux qw as a 
function of the longitudinal coordinate s: 
curves i, 2, and 3 were constructed for bodies 
with generator equations Yc = xa c' ~ = 0.5, 
0.25, and 0.125, respectively; 4)(xc--l) I~ + 
lo = 4, T~ = 288~ T w Yc ; 5) a sphere, M~ = 

300~ Peo = 5.56 "I0= N/m2, RN = 0.i m; a) 

(~)w = o; b) (~)w = 0.3, 

and hence it follows that the larger HL, the higher the efficiency. In our case, in con- 
sidering bodies of different shape we shall compare the total heat flux in the presence and 

absence of blowing .i rwqwds and rwqwods under conditions of either the same areas over 
0 0 

which the blowing is distributed or the same values of Yc = 1 and the same total flow rate 

i rw(pu)wdx for the different bodies. This comparison shows that with the mass flow rate laws 
6 

(p-~)w(S) = constthe total heat flux for theblunter bodies is less than fora sphere and abody with 
o.s in both the first and the second cases (e.g., for the same the profile equation Yc = Xc 

i S ~ and f~ areas H = 4.27, r~,q~ods ~ 0.226 for Yc = x~" s, rwq~ods = 0,182 for Yc = Xc , 
0 0 

j (pv) w = i the values of rwq~ds are 0.0234 and 0.0181, respectively). 
0 

Thus, analysis of the local and the integrated heat-transfer characteristics shows that 
for laminar flow conditions in the boundary layer one can reduce the heat flux to the body by 

using blunt bodies. 

We now consider flow for values of the Reynolds number that give laminar, transitional and 
turbulent flow conditions in the boundary layer. 

Figure 3 shows the behavior of the dimensionless heat flux qw(S) with laminar, transi- 
tional, and turbulent flow regions in the boundary layer and with constant__ surface tempera- 
ture. The calculations were performed for (pv) w = 0 (Fig. 3a) and (pv) w = 0.3 (Fig. 3b). 
Curves 1-5 correspond to the same body shapes as in Fig. I. It can be seen from Fig. 3a that 
on the lateral part of the surface, where laminar flow conditions obtain in the boundary lay- 
er, the values of qw(S) coincide with the curves of Fig. la. In the transition region and in 
the developed flow turbulence region the heat flux increases markedly compared with the cor- 
responding curves for laminar flow in the boundary layer. Here, as can be seen from Fig. 3a, 
for the blunter bodies (curves 3, 4) the zone where the maximum heat flux is found is shifted 
slightly back along the body profile compared with the position of the maximum qw(s) for 
laminar flow conditions. 
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Fig. 4. The dimensionless heat flux qw (a) and 
the reduced surface temperature @w (b) as afunc- 
tion of the longitudinal coordinate s at various 
times. The calculations have been made for the 

0 . 1 2 5  ~ = 
body with the profile equation Yc = Xc 
4, T= = 2880K, T1i = 300 ~ Peo = 5.56 '105 N/m=, 
R N = 0.i m; the solid lines correspond to an 
impermeable wall, and the broken lines were ob- 
tained for (0-~) w = 0.5, K = 3.187; i) r = 0; 2) 
0.03; 3) 0.07. 

It should be noted that the calculated results agree satisfactorily, in regard to loca- 
tion and value of the maximum heat flux and for the body shapes examined, with the formula 
for qw(S) of [14], obtained for developed turbulent flow. It can be seen from the figures 
that in developed turbulent flow the maximum heat flux values are close for the different 
bodies. Calculations have shown for large stagnation pressure values that the location and 
value of the maximum heat flux is independent of whether or not the transition flow region 

is taken into account. 

As one might expect, with blowing of gas into the boundary layer there is destabiliza- 
tion of the flow and the point of loss of stability for the different bodies is shifted 
toward the stagnation point (curves 2, 3, 4 of Fig. 3b). Therefore, for some values of s the 
heat flux with blowing becomes larger than the corresponding qw with no blowing, because of 
the flow becoming turbulent earlier. 

Figure 2b shows the ratio qw/qwo as a function of (9~)w/ --I, obtained for the region of 
k cp 70 

developed flow turbulence. Curve i was obtained using Eq. (14); the open points correspond 
to s = 0.6, and the solid points to s = 0.8. It can be seen from Fig. 2b that for moderate 
blowing levels ((p-~)w~0.5) the ratio qw/qwo obtained from Eq. (14) is close to the calcu- 
lated value, so that one can use Eq. (14) for the bodies y~ = x ~ Yc = x~ '125, (xc--I)I~ y~0 = ] 
at moderate blowing in the developed turbulent flow region. 

A comparison of total heat flux for the case with laminar, transitional, and turbulent 
flow regions in the boundary layer has shown that for bodies with a smaller radius of curva- 
ture, the values of total heat flux reaching the body per unit time also become less (e.g., 

s 

when we consider the same surface area ~ = 4.27, for (9~)~= 0 ~r~q~ods =0.49 for the body 
0 

= o.5 and for (P-~)w 0.5 these with the equation yc=x~ '125, r~qwods=O.65 for the case Yc Xc ' = 
0 

values are equal to 0.39 and 0.55, respectively). 

From this viewpoint it is also expedient to use a body of blunted shape, but one must 
remember that in this case the maximum local heat flux remains practically the same for all 

the bodies. 
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We now consider the results of solving the coupled problem, Figure 4 shows the dimen- 
sionless heat flux qw(s) (a) and the surface temperature 9w(S) (b) at various times for the 
case where various flow regimes are found in the boundary layer. Here the calculations were 

o. 125 The solid curves were drawn for flow without blowing, and the made for the case Yc = x c _a" 
broken lines for flow with (pv) w = 0.5. It follows from the solution of the coupled heat 
transfer problem that for flows with large Reynolds number the surface temperature in the 
maximum flux region takes on a high value as time goes on, which leads to a subsequent de- 
crease of heat flux and to the occurrence of minimum value of qw(S) for these sections of the 
lateral surface. However, for the spherical body, as time goes on, the qualitative behavior 
of qw(S) does not change in comparison with the distribution of qw(S) at T = 0. This is 
associated with a difference in the behavior of Te(S) for bodies of this shape. 

From the results of solving the boundary problem of Eqs. (1)-(8) for the case of low 
stagnation pressures (laminar flow) we also see that for bodies with a nonmonotonic heat flux 
behavior along the body profile, the surface temperature distribution 6w(S) is nonmonotonic as 

time goes on (the equations of the profiles are Yc = Xc "25, Yc - 0.~25, (xc--l) I~ + yc ~ = i) 
St ( s , ~ ) =  q~/(1--O~) - xc  

Here  t h e  r a t i o  o f  S t a n t o n  mumbers ~ o  q~o/(1 - -  , w h e r e  Sto  i s  t h e  v a l u e  a t  t h e  s t a g -  
- 0~o) 

nation point, is not a conservative function of the process, as was shown for a sphere in [2], 
= x ~ where the value of St/Sto varies by at most 15- and as occurs for the body with Yc c ' 

18% for large values of s. 

For the same governing parameters we examined the problem of heating of a body (with 
o.125) where we use the relation obtained in [Ii] as a boundary profile equation Yc = Xc 

condition for the gas phase. The difference in regard to surface temperature with the re- 
sults of solving the coupled problem was 40% in the maximum flux region at the same values 
of time. 

Thus, in the laminar flow regime in the boundary layer, for bodies of blunt shape with a 
nonmonotonic behavior of qw(s) and ew(S), the ratio of the numbers St/Sto varies considerably 
with time, and the use of a heat-transfer coefficient found for the isothermal-wall case leads 
to appreciable errors in determining important practical quantities. The same situation 
arises for bodies of the above geometry at large values of peo for complex flow regimes in 
the boundary layer~ which also leads to a need to solve the coupled problem. 

NOTATION 

Y Uer ! 
~' ~ = V~ .: pdy, Dorodnitsyn--Lees variables; s, dimensionless arc length, reckoned from 

t h e  f o r w a r d  s t a g n a t i o n  p o i n t ;  x ,  y ,  a x e s  i n  a b o d y - f i x e d  c o o r d i n a t e  s y s t e m ;  f ,  d i m e n s i o n l e s s  
s 

stream function; f~ = U/Ue, dimensionless velocity; ~ = ( 2  j pegeUe(rw/RN)~ds)/(pegeUe(rm/RN)~), 
0 

2 dimensionless heat flux; ~:~/ue.due/ds,?--Ue/CpTeo' , dimensionless parameters; qw = ~w ~ Vmpecheo , 

Pr. Re~ vmPeoRN/Peo, Vm=~29~eo, Prandtl and Reynolds numbers, and maximum velocity; e = T/Teo, 
dimensionless temperature; H, p, Cp, enthalpy, density, and specific heat, respectively; 
~, %, coefficients of viscosity and thermal conductivity; (PV)w, flow rate of gas through the 

F~ 
porous shell; (~)z~=(Pv)w-- , dimensionless flow rate of gas through the porous shell; RI, 

dimensionless radius of curvature of the wetted profile at a given point; ~, angle between 
the tangent to the contour and the x c axis; yl = --Y/RN, �9 = t/t*, dimensionless coordinate 
in the solid body and dimensionless time; t, physical time; t* = RNP:,C~,/XI,, characteristic 
time; RN, characteristic body dimension; L, thickness of porous shell; o, Stefan--Boltzmann 
constant; s, emissivity; ~, porosity; St ~q~vmheopeo/~R'ep~v~cp(Teo--Tw) Stanton number. Subscripts: 
e, e0, w, k, values at the outer edge of the boundary layer, at the outer edge at the stagna- 
tion point, on the body surface, and at the inner wall of the shell at Yl = L/RN; i, charac- 
teristic of the solid component of the porous shell, temperature of the porous material; g, 
gaseous component in the porous body; li, temperature at the initial time; ~, gas temperature 
in the shell cavity; *, characteristic values. 
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POSSIBILITY OF RAPID DETERMINATION OF TURBULENCE GENERATION 

IN A LAMINAR BOUNDARY LAYER 

E. I. Polyak UDC 532.526.3 

An engineering method is proposed for determining the initiation of turbulence 
in a subsonic (M ~ i) laminar boundary layer with a heat supply in the presence 
of a pressure gradient and injection. 

A large number of theoretical and experimental works have by now been devoted to the 
question of the transition of a laminar boundary layer into a turbulent boundary layer. How- 
ever, this phenomenon (transition from laminar to turbulent boundary layer) is not amenable 
to rational explanation in every sense. What is needed is a methodological approach which 
considers both theoretical and empirical aspects of the phenomenon. Possible elements of 
such an approach, presented below, permit consideration of some of these aspects. 

To determine the moment of loss of stability of the laminar boundary layer on the body 
under consideration, it is necessary to have estimates of the velocity profiles of this lay- 
er along the generatrix of the body. However, such estimates are often lacking, or obtain- 
ing them proves to be a very complex task. Thus, the stability of an incompressible laminar 
boundary layer is often determined by using the approximate velocity profile of K. Pohlhausen 
[i], which adequately describes the solutions of the equation of an incompressible boundary 
layer in the presence of a pressure gradient: 
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